
Page 1 of 3

Lab 4: Sequential Circuits – Latch, Flip-Flip and Register

Purpose

In this lab you will learn about sequential circuits. Sequential circuits are memory circuits for storing
binary values. You will design and implement the latch, the flip-flop and the register. These are standard
memory circuits used in microprocessors for storing values similar to variables in a program.

Procedure

1. The D latch with enable is a simple storage element for storing one bit of data. When E (Enable)
is a 1, the data input at D is stored at Q. In other words, the D latch stores data into Q as long as E
is a 1, i.e. Q changes as long as E is a 1. The circuit and symbol are shown below. Draw the
schematic circuit for a D latch with enable. Connect the inputs and outputs to appropriate switches
and LEDs. Implement the circuit onto the FPGA board to test and verify that it works correctly.

S

R

Q

Q'

E

R'

S'D

Q

Q'

D

E

2. The D flip-flop stores data at every rising edge of the clock signal. In other words, it is
synchronize to the clock. The circuit and symbol are shown below. Draw the schematic circuit for
a D flip flop. Connect the inputs and outputs to appropriate switches and LEDs. Implement the
circuit onto the FPGA board to test and verify that it works correctly. In order to test the circuit,
you need to slow down the 50 MHz clock. The Verilog code for a clock divider to slow down a 50
MHz clock to 1 Hz is shown below. Connect the 50 MHz clock source (PIN_L1) to the input of
the clock_divider circuit. Connect the output of the clock_divider to the Clk signal of the flip flop.

D

Clk

Q

Q'

QM

Master Slave

Q

Q'

D

E

Q

Q'

D

E

Q

Q'

D

Clk

module clock_divider
#(parameter [24:0] half = 25'd25000000) // 50M/2 = 1 Hz output clock
(
 input clock_in, // 50MHz input clock
 output reg clock
);

 reg [24:0] count;

 always @(posedge clock_in) begin
 if (count == half) begin
 count <= 25'd0;
 clock <= ~clock;
 end

Page 2 of 3

 else begin
 count <= count+1;
 end
 end
endmodule

Q

Q'

D

Clk50 MHz clock

SW[0] LEDR[0]

ClockClock_in

Clock Divider

3. Instead of using the D flip-flop where it will always store a new value at every rising clock edge,
we want a D flip-flop with enable so that we can control when we want to store in a value. The
circuit and symbol for the D flip-flop with enable is shown next. The other component in the
circuit is a 1-bit 2-to-1 mux which you should already have from lab 1.

D

E
Clk

Q

Q'

Q

Q'

D

Clk

y
s

0

1

Q

Q'

D

Clk

E

4. A 4-bit register can store four bits of data together as a unit using four D flip-flop with enable
circuits. The circuit and symbol for the 4-bit register are shown below.

Load'
Clock

Clk

D3 Q3

E

Clk

D2 Q2

E

Clk

D1 Q1

E

Clk

D0 Q0

E

D3 D2 D1 D0

Q0Q1Q2Q3

Connect the inputs and outputs to appropriate switches and LEDs as follows:

Load' to KEY[0]

Clock to the 50 MHz clock

D3 – D0 to SW[3] – SW[0]

Q3 – Q0 to LEDR[3] – LEDR[0]

Implement the circuit onto the FPGA board to test and verify that it works correctly.

Alternatively, if instead of using the D flip-flop with enable that you created from #3 above, you
can use the symbol from the Quartus library. It is called dffe and is under the storage folder. The
dffe symbol from the library is

Page 3 of 3

Clk

D Q

E

PRN

CLRN

PRN stands for preset' which means a 0 signal will set Q to a 1.

CLRN stands for clear' which means a 0 signal will set Q to a 0.

If you don’t want to use the PRN and CLRN signals, you need to connect them to VCC.

Set'

Load'
Clock

Clk

D3 Q3

E

PRN

CLRN

Clk

D2 Q2

E

PRN

CLRN

Clk

D1 Q1

E

PRN

CLRN

Clk

D0 Q0

E

PRN

CLRN

D3 D2 D1 D0

Q0Q1Q2Q3

Clear'

Connect and pin map the following:

Load' to KEY[0]

Set' to KEY[1]

Clear' to KEY[2]

Clock to the 50 MHz clock

D3 – D0 to SW[3] – SW[0]

Q3 – Q0 to LEDR[3] – LEDR[0]

